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ABSTRACT

This Deliverable 11 of the ETHOS project, is part of WP3 “Dissemination and communication activities” and contains
the lecturing presentations of the ETHOS project to the graduate and post-graduate students in the School of Naval
Architecture and Marine Engineering and School of Civil Engineering, NTUA.

1. Introduction

Lecture presentations detailing the scientific
outcomes of the ETHOS project have been prepared for
graduate students of the School of Naval Architecture
and Marine Engineering, NTUA, as well as postgraduate
students from the School of Naval Architecture and
Marine Engineering and the School of Civil Engineering,
NTUA. These lectures are delivered by three research
members—namely, the Coordinator, Assistant
Professor D. Konispoliatis; Professor |. Chatjigeorgiou;
and Professor G. Grigoropoulos. The lecture series also
incorporates relevant videos showcasing scaled-down
constructions and experimental tests conducted in
NTUA’s wave tank, thereby elucidating the scientific
principles underpinning the proposed project.

The course aims to equip students with:

e The essential theoretical background to
comprehend the fundamental phenomena
governing the interaction between ocean wave-
generated forces and floating or fixed bodies and
structures. This includes understanding load
generation mechanisms on marine structures based
on their size (hydrodynamically “slender” versus
volumetric bodies).

e Specialized knowledge in the mathematical
modeling of related diffraction and radiation
problems, including the presentation and

application of fundamental solution methods and
techniques.

e Expertise in determining environmental loads on
structures through flow dynamics theory.

e The ability to calculate loads on oscillating water
column devices with multiple chambers and to
evaluate their wave power efficiency.

Upon successful completion of the course, students will
be able to:

e Comprehend the critical issues involved in modeling
environmental conditions.

e Utilize fundamental results from potential flow
theory to determine environmental loads acting on
floating structures.

e Apply the numerical methods covered in the course
to perform basic calculations of wave fields, applied
loads on floating structures—particularly Oscillating
Water Column devices—and their responses due to
interactions with ocean waves.
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SEA LOADS ON MARINE
STRUCTURES
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POTENTIAL FLOW THEORY

“When a flow is both inviscid and irrotational, pleasant things happen” — F. M. White, Fluid
Mechanics 4" ed.

We can treat external flows around bodies as inviscid (i.e. frictionless), irrotational (i.e. the
fluid particles are not rotating) and incompressible. Thus, we can define a potential function
¢@(x,z,t), as a continuous function that satisfies the basic laws of fluid mechanics, and equals
to:

D(Xy, X3, X35 t) = D(Xq, Xz, X35 1) +Ds(Xy, X, X35 t)

Where @ is the undisturbed velocity potential of the
incoming wave and @, is the scattered velocity
potential due to the presence of the body.

The origin of the coordinate system is

on the CG.

The origin of the O — X;, X,, X5 coordinate system is ' G: Center of gravity
on the undisturbed water surface level

The origin of the coordinate system is on the CG and the axes are always

parallel to O — X4, X,, X3



Laboratory for Floating Structures and Mooring Systems,
School of Naval Architecture and Marine Engineering,
National Technical University of Athens (NTUA)

POTENTIAL FLOW THEORY

As being also known, the velocity potential must satisfy the Laplace equation:

2 2 2
Acb=0<—>\72cb=0<—>(fo+3;§+ng)=0

as well as the below boundary conditions:

D
- on the sea bottom: P 0; X3=—d

- on the body’s wetted surface: Z% = Vy; Vy is the fluid’s velocity at the N direction; N is
the vertical to the solid’s surface vector
expressed on the O —X;,X,,X3; coordinate
system

- Kinematic and dynamic boundary conditions:

9 9D a7 Il D 9D

— = 0; for X3 = {(Xy, Xy t
ot ox, ax1 +axz axz 6X3 or X3 = ¢(X1, Xa; 1)
acp 2 o 2+ + gX3 = 0; for X3 = {(X1, Xp;t
at (axl) (aXZ) (aXs g 3= Y or 3 _(( 1,42, )
- atinfinity, stating that propagating disturbances must be outgoing 4
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POTENTIAL FLOW THEORY

The linearization procedure of the kinematic and dynamic boundary conditions is well

described in the corresponding course (refer to the “Analysis and Design of Floating
Structures”). Thus, it is no further elaborated here.

Then we linearize the boundary condition on the body’s wetted surface.

But, before that we will present the kinematics of a fluid
particle on the body’s wetted surface

Click to continu:/
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POTENTIAL FLOW THEORY

Assuming that a fluid particle P is placed on the body’s wetted surface, its position vector
relevant to the undisturbed co-ordinate system O — X, X5, X5 can be written as:

— —

X=XO 4 XM 42X
Herein, small motions of the body around its mean position is assumed.

The term eX( denotes the first order displacement of the particle P from its mean position
X© due to the first order acting wave loads on the body. Similar for the £2X@ term.

Fach of the X ¥ ¥(2 motions can be
written decomposed into two terms: a) the
translational motions,Xgl,ng,Xg3 of the CG
on the O — X, X,, X5 co ordinate system; and
b) the rotational motions around the
coordinate system , according to
the following relation:

X0 =X9 + ROZ, j=0,1,2
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POTENTIAL FLOW THEORY

X0 =X9 + ROZ, j=0,1,2

Herein, )_(}]) denotes the translational motions of the CG; RU) is the rotational matrix,
containing the rotation angles; X is the position vector of the P point relevant to

a11 412 413
It holds: RU) = [az1 a2z  aszz| whereas:
az; dz; a3z3
— (11 = COSX5COSXg
A1, = SINX4SINX5COSXg — COSX,SINXg
13 = COSX4SINX:COSXg + Sinx,Sinxg
a1 = COSX5Sinxg
Ay, = SINX,SiNXsSinxg + COSX,4COSX,

A3 = COSX,4SINXcSINXg — SiNX,4COSXg

—sinxz

A3, = SINX4COSXz A33 = COSX,4COSXs
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POTENTIAL FLOW THEORY

Applying Taylor series on the trigonometric functions, the rotation matrix R can be written,
for the zero —order (calm position); first- and second- order terms as:

1 0 0 0 —xg” xg)
RO) — lo 1 o|l;: RM® = xél) 1 _xil)
0 0 1 —xél) xil) 1
= [(x(l))z_l_(xél))z] BVONRNONG MOV ONO
R(2) = xél) " [(x(l))2+(xél))2] (1) 4 x(l) (1)
_x® e = [(x(l))2+(x§1))2]_
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POTENTIAL FLOW THEORY

)
X1

The zero order term: X(© = )—(20) + ROy = Xég)
+(©

493 |

X1

+ | X2 | denotes the coordinates of the
X3

P point, at its calm position, relevant to the O — X, X,, X5 coordinate system

The first order term:

Similar for the second order term ...
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POTENTIAL FLOW THEORY

The linearization procedure of the kinematic and dynamic boundary conditions is well
described in the corresponding course (refer to the “Analysis and Design of Floating
Structures”). Thus, it is no further elaborated here.

Then we linearize the boundary condition on the body’s wetted surface.

But, before that we will present the kinematics of a fluid
particle on the body’s wetted surface

The boundary condition on the body’s wetted surface denotes that the
relevant velocity of the fluid and the body’s wetted surface equals to
zero on the direction of the vertical to the body’s surface vector V. This
physically means that the fluid particles do not enter inside the solid.

Thus, the equation i Vy; can be written as: VON = VN

The fluid velocity on the body’s surface, can be written as: V = X = eX( + 2X®@ (1)

The zero-order terms does not appear in the equation, since X© js independent from the
time (t).
10
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POTENTIAL FLOW THEORY

After keeping the first-order terms, it holds:

V= 8)})(1); here X(1) = )_(151) + RMy
Similar for the vertical vector N: N = N© 4+ ¢eN@ 4 £2N®) (2)

Furthermore, it is well known that: ®(x,y,z;t) = >, e"®™ (x, y, z; t), where, holding
the first order terms, we obtain: & = cpgl) + cpgl)

The Cbgl) term equals to the sum of the diffraction and the radiation potential, i.e.

oV = otV 4 otV (3)
Diffracted flow due to Radiated flow due to
the presence of the the motions of the
body (body is body in the wave
assumed restrained in impact

the wave impact) 11
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POTENTIAL FLOW THEORY

Thus, the equation: V®N = VN can be written, for the first-order terms, as:

(Fof + 7o + Fo )i = v

or by decomposing:
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POTENTIAL FLOW THEORY

We will further analyze the term V(17 i.e.

—_—

V(l)ﬁ —_ ‘/1(1)711 + ‘/2(1)712 + V3(1)n3 —_ (X‘é]i) - X6x2 + 5C5.X3)Tl1 +

5 (1 : : 5 (1 : : 5 (1 > (1 5 (1
+(X§2) + XgXx1 — x4x3) n, + (XéB) + X4Xp — x5x1) n3 = Xél)nl + Xéz)nz + X;3)n3 +

+(xn3 — x3n3)%4 + (X3ng — X N3) X5 + (
Thus,

where (ny, n,, n3) =nand (ny, ng, ng) =rxn
and %; = (g1, X2, X43) forj=1,2,3 and x; = (X4, %45, % g6 ) for j=4,5,6

Here, 7 is the position vector with respect to the origin of the coordinate system.

In the framework of linearity, we assume that:

(K
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POTENTIAL FLOW THEORY

The velocity potentials and the body’s motions can be also written as:

i DY it 1
CD]( ) =Re{<p]§ )}e wt. i =0,1,....,7 xj()=Re{x

Pleiotj=1,..,6

The first-order potential around a freely floating cylindrical body, can be written as:
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POTENTIAL FLOW THEORY

One of the primary reasons for studying the fluid motion past a body is our desire to predict
the forces and moments acting on the body due to the dynamic pressure of the fluid. Thus,
we wish to consider the six components of the force and moment vectors, which are
represented by the integrals of the pressure over the body surface, or

F = ﬂ PndS M = jf P(rxn)dS
S

S

Here, the normal vector n is taken to be positive when pointing out of the fluid volume and
hence into the body; S is the body’s wetted surface.
The pressure derives from the Bernoulli equation, i.e.

The fluid pressure on a random location on the body’s wette1d surface can be derived by:
5 2
P(Xy, Xz, X35 1) = —pgXs — p®¢ — 5 p|VO|

Assuming that the

FOO = —jf nggﬁ’dS—ﬂ p®.ndS
s

S
15
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" FIRST-ORDER FORCES/MOMENTS

Similarly, also the first order moments can be derived. Thus, the first order forces and

moments can be written as:

F, = — ﬂ pgXsn,dS — ﬂ p®dn;, dS,k =1,2,3and k = 4,5,6

S

S

Substituting the velocity potential into the above equation, it holds:

Fi = —F,, — iwpe ™t jf

S

()
Qo + @7 + Z Xjo®j
j=1

n,dS,k =1,2,3and k = 4,5,6

The first term in the above equation denotes the hydrostatic forces on the body, whereas, the
second term of the equation denotes the hydrodynamic forces acting on the body.

16
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HYDROSTATIC FORCES/MOMENTS

The hydrostatic forces and moments equal to:

F (t) = —CyjX;,fork,j = 1,2,...,6

Here X] are the body’s motions/rotations at its 6-degrees of freedom, whereas, C,g. are the
restoring coefficients.

Assuming that the examined body has a single plane of symmetry x;-x,, i.e. cylindrical bodies,
the non zero restoring coefficients are:

Cos = p9Awss  Css=Css = —pg [ Xedwus  Cas = pg7Ghiz;  Cos = pgvGM;
AwL
Here A,, is the water line surface, V is the displace

fluid volume, GM, GM,, are the transverse and
longitudinal metacentric height.

Ship stability diagram showing centre of gravity (G), centre
of buoyancy (B), and metacentre (M) with ship upright and

heeled over to one side.

As long as the load of a ship remains stable, G is fixed. For
small angles M can alsc be considered to be fixed, while B
moves as the ship heels.
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HYDRODYNAMIC FORCES/MOMENTS

The hydrodynamic forces and moments can be divided to:
a) The exciting forces, derived from the diffraction problem, i.e.

b) The hydrodynamic drag forces of the fI_uid due to the accelerating motion of the body, i.e.

6
Fy hydro = —iwpe @t ﬂ zfcjocpj n,dS,k =1,2,3and k = 4,5,6
s =1 ] [
By introducing, the: —p ﬂ [QDj]nde = Qgj t Zbkj
S

where, a,; and b,; are the hydrodynamic added mass and damping coefficient , respectively,
at the k direction due to the motion of the body in the j-th direction.

second term denotes the scattered/diffracted waves due to the presence of ’1ch

The first term of the exciting forces denotes the Froude-Krylov forces, whereas, the
& body. In the Morison equation, the second term is assumed negligible.
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HYDRODYNAMIC FORCES/MOMENTS

Thus, 36 (i.e. 6x6) hydrodynamic coefficients can be defined.

Ay (or bkj) =

A1 Az QA3 Qg Ags  Ogel

The hydrodynamic coefficients are symmetric, thus, it holds: ayj = aji and by = bjy,

We introduce the below mass matrix (i.e. 6x6) which for single plane of symmetry x;-x,,

equals to: C m 0 0 0 mX,3 0
0 m 0 —mXy;3 0 0
| 0 0 m 0 0 0
i =0 —mXg,z; 0 m 0 —Ja6
e 0 0 0 Jss 0
L 0 0 0 _]64 0 ]66 d
where m is the mass of the body; J., are the moment of inertia; (O,O,Xg3) are the coordinates
of the CG relevant to 0-X, X, X; 19
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MOTION EQUATION

From the Newton's 2" law it holds:

which for single plane of symmetry x,-x;, equals to:

20
LSS



Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

It is known that the wave elevation and the velocity potential
are derived by:

s
{o(x,t) = Re [3 e‘("x“”t)]

tH g cosh(kz)
2 w cosh(kd)

Py (%,2;t) = Re [— ei(kx_‘“t)] = Re[po(x,2)e"t]

tH g cosh(kz)
2 w cosh(kd)

where ¢, = — e

The coefficient ¢ = @, + @ should form the solution of Laplace
equation, i.e.:

0?2 0?2
QU_I_ @ — 0
dx%  0z2
and satisfy the boundary conditions on the sea bottom, the free water surface, and a
radiation condition at infinity:

: dp; | _
= (7 i lk%) =9

21



Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

We introduce cylindrical coordinates: x = rcosf,y = rsinf

Thus,
e* = cosx + isinx — cos(rcos8) + isin(rcosH)
e = cosy + isiny — cos(rsinf) + isin(rsind)

Using Bessel series we can write:

cos(rcosf) = J,(r) + 2 z (—1)™J,,,(r)cos(2mB)
m=1

sin(rcosf) = 2 z (=)™, m41(r)cos((Z2m + 1)0)
m=0

R

‘—'—’ _

T

| r. . .
= —j cos(rsinf) cos(2mb) du  Jom+1 = EJ sin(rsind) sin((2m + 1)6) du
0 0




Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

Hence: e* = cos(rcosO) + isin(rcosf)=

=Jo) +2 ) (=1 om(r)cos(2mb) +
m=1

+2i Z (=D)™/am+1(r)cos((2m + 1)) =
m=0

= Jo(r) + 2iJ1(r) cos(8) + 2i%],(r) cos(26) + -+ +

+2i™J...(r) cos(m8)

So:

Here &, corresponds to Neumann symbol, ¢,, =1, m=0and¢g,, =2,m>0




Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

Thus:

It holds that: H,,,(r) = J,,(r) + iY,,,(r)

Jm () cos(imm) — J_p, (1)

sin(mm)

where Y, (r) =

Jom(@) = (1),

Here H,, stands for the mth order Hankel

function of first kind.
It remains to calculate the potential ¢@-. The method of determination is similar to that for

the calculation of the undisturbed flow potential carried out in the first lessons.

More specifically, following the method of separable variables:
24



Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

The velocity potential forms: ¢-(r,0,z) = R(r) - 0(0) - Z(2)

After substituting in the Laplace equation we get:

62407 1lop; 1 62407 62<P7
+ = =0-
or? r or 1r? 002 072

oz " var) treaez 7920 O

In order equation (5) to be valid:
Rememoe”
1040 10%Z

I(OZR 16R) 1 0°0 10°%Z

6@ = —m? Ko([zﬁ = kz,k,m € R, hence:
020 , 0°Z
W-I_@m =0Kalﬁ—k Z=0 ©)

0(0) = Asin(mB) + Bcos(m0O) xarZ(z) = Ce** + De™*

It holds ©@(8)= O(—8) i.e.,: ©(8) = Bcos(mB) Bi1> cos(m8) 2



Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

We apply the boundary condition on the seabed:

d7Z
Gz 0,Cke*? — Dke™*% = 0,C = D, hence

c=1
Z(z) = C(e** + e*?) = Ccosh(kz) = cosh(kz)
From Equation (5) it is derived:

0°R  10R m?2

W'F;E-l-(kz—r—z)f{:() (6)

Eq. (6) has a solution in the form: R(r) = C,J,,(kr) + C,Y,,, (kr)

Hence the scattered velocity potential can be written as:
@, (r,0,z) = Z (CyJm (kr) + C, Y, (kr))cosh(kz)cos(m0)

The boundary condition at infinity has not yet been used. To use it, we will calculate the
limit values of Bessel functions for large arguments : 26




Vertical Bottom Seated Cylinder (McCamy-

Kuchs)
/ 2 1 1
. ~ %sm (kr — Emn — Zn)

2 I 1 1 Y (k
Tr—00 - TL'kT'COS r Zmn 477: ’ m( r)

112 o1 1 2 (2 1
r—00 - 2 r T[k?" 05 r 2 mi 4 n V T[k?" > r 2 e 4 n

_ 12 (o1 A E: ] 1
T G et S Jkr S ST

. 0p7 .
fm V77 tker ) =0~

G

Thus:

Jm (k)

Y, (k1)

Hence:

Z JE(CL (kr) + Cy¥ (k1) — iR (€ Jy (7)) + G Yo (r)))cosh(kz) cos(mE) = O

m=0

27




Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

Thus, the term in the brackets should be equal to zero:

/2 T U S |
(C, —iC)k e i(ler—gmm—zm) _ 5 C, =iC,

Hence:

Gl B = z (Cofn () + i€y Y ()} cosh(lez)cos(mB) —

m=0

@, (r,0,z) = Z C,H,,(kr)cosh(kz)cos(m®)

m=0

o It was assumed that k real number. For the solution to be complete we should
Wl investigate whether there are Laplace solutions that satisfy the boundary
conditions for which k imaginary number, k=ia

Reme

28




Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

Equation (6) can be rewritten as:
m
—+———(a2+T—)R:0 (7)

We derive from Equation (7) that:

R(r) = (Ci L, (a,r) + CoK,, (a,, 7)) cos(a,z) cos(mBb) (8)

Where a,, are infinite real roots of equation: w? + agtan(ad) = 0, which are formed by:
nm w1

_ REL n=123..
=g g nm "

For the boundary condition to hold at infinity and the potential function to remain closed,
then C; = 0,since L, (a,,17) |, — 0, whereas K, (a,,7) |- — 0, Hence:

(0.0)

@, (r,0,z) = z (AmHm(kr) cosh(kz) + z B Ko (1) cos(anz)> cos(mb) -
n=1

m=0




Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

Intoducing ¢y = —ik, and considering that:

tan(z) = —itanh(iz), sin(z) = —isinh(iz), cos(z) = cosh(z)

From equation: w? + apgtan(ad) = 0 we can derive the dispersion equation.

Therefore the velocity potential can be written as:

It remains to determine B,,,, which results from the boundary condition on the wetted
surface of the body.

997 _ 990 _,

or or ’

= , L

z A Bmn K'm (anr) cos(anz) = nglm-l_lk] m (kT) (9)
n=0

30




Vertical Bottom Seated Cylinder (McCamy-
Kuchs)

From Eq.(7) we can evaluate the form of the velocity potential:

The case we examined is the simplest, since the cylinder is considered compact and the
solution was only for the diffraction problem!

The solution process becomes very demanding when
we need to consider more complex geometry body/bodies.

\ \Intermedlary pile
Wide columns
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Vertical Cylinder — McCamy & Fuchs

The exciting forces F,(t) = Re[f,.e"*“*] can be written as:
z=d 0=2m

e Il i

fx =~ ﬂ Pn,dS = —iwpa J pcosOdOdz — =
H ka)?H; (k
S zio 0=0 ﬂpgaz (7) m(ka) 1( a)

tanh(kd)

The exciting moments M,, (t) = Re[mye_i“)t] can be written as:

z=d =21

m
m, = —ﬂ Pzn,dS = —iwpa f j @zcosOdOdz — 4 7
S z mpga’ (—)
4

=0 6=0 2

1
(kd tanh(kd) — 1 + cosh(kd))

The horizontal exciting forces per unit length equal to:

dFE,(t) B 4 2 (E ) cosh(kz)
i (k)2 [ (ka))? + (Y (k)2 \2/ sinh(ed)

~ n(ka)3H, (ka)

sin(wt — ¢€)

32
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Vertical Cylinder — McCamy & Fuchs

The previous relation can be written as:

dF, 4 h(k
O = pa’ ey A(ka) w? ( )E?Sh((kczl; sin(wt — ¢€)

where  A(ka) = [(]! (ka))? Y! (ka))? ‘E £ = arctan J1(ka)
(ka) = [(J1(ka))* + (Y1 (ka))“] Yl’(ka)
It is known that:
d® H cosh(kz) (D) du  H cosh(kz) . .
YT Ox T2 wcosh(kd) SO ot 2% sinh(kd) il =)
sin(wt — €) = sin(wt) cos(e) — cos(wt) sin(g)
Substituting in the above Eq.
JE) e B0 L Yi (ka)
dz TP Cm gy +bmpateu mom n(ka)? (J; (ka))? + (¥; (ka))?’
4 J1(ka)

b= CmaSine = o e T ka))? + (L ka))E &
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Vertical Cylinder — McCamy & Fuchs

dE, (t)

In the previous relation: —x 7 _-npaZCm;——+-bnpa wu The second
dz part is function
of the fluid
locit
The first part is function of the velotity :
\ L ) (hydrodynamic
fluid acceleration (inertia Jereine

loads)
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Dual Chamber — OWC Converter

The fluid flow around the OWC can be described by the Alrturbine

Solid structure
Air flow A

potential function:

Air columns

Xjo®; =

5
© =@t Q7 +DinoPp +

Wave direction

Jj=1

®p * Dino®Ppr t ) Xjo@;

5
j=1
The potentials ¢; (j=0, 7, 1,...,5, P) have to satisfy the:
® Laplace equation;
® The kinematic boundary conditions on the sea
bottom and on the mean body’s wetted surface;
® The linearized boundary condition at the outer

and inner free sea surface:

5 a (p] ._ f > < < Weie difa CLOI& I.‘"‘ | I:,-" I -
WPj— g = 0,/=0,1,3,5,7, forr =2 a,; 0 <r < ay a7
dp L W Y
T b L O | _
@ QDP g 0z - 09 for r 2 Cl4 — S(ﬁ@;tru@gre
o0 . |
w?p, —g—+ = - for0<r<a;,a,<r<as
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Dual Chamber — OWC Converter

The fluid flow around the OWC can be described by the Air b
potential function: ___/___

Solid structure
) Air flow .
Air columns

Xjo®; =

5
© =@t Q7 +DinoPp +

Wave direction

Jj=1

Xjo Pj

5
®p + DinoPp T

j=1
The potentials ¢; (j=0, 7, 1,...,5, P) have to satisfy the:
® Laplace equation;
® The kinematic boundary conditions on the sea SN |
bottom and on the mean body’s wetted surface; Air columns < aSRENR

® The linearized boundary condition at the outer
and inner free sea surface:

Wave direction "‘I
—l
1]

a .
w?Q; — g% =0,,=0,7, forr = a,

w?@; —g—+=0, j=1.3,5 forr > a, Oy T solidsiucture
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Dual Chamber — OWC Converter

The diffraction and the radiation potentials in each fluid region € (€=I, I, Ill, IV) can be
expressed as follows:

op(r,0,z) = —iw gz mlPDm(r z) cos(m@), @;(r,0,z) = jf)m(r, z)cos(m@)

1
)61 — _qu ’ 0
@p(1,0,2) iwp P,O(T z)cos(m@)

The velocity potentials @, k = D, 1,3,5, P and their derivatives must be continuous at the
vertical boundaries of neighboring fluid regions, i.e.:

pll (a,,z) = ‘{’,’C’m(a4,z) owll 6‘{”” Airtarbine
Wiln(ay,2) = Wl (as ) Or or Yy
r=as r=as
Wil (ay7) = Wl(apz)  oWIL|  owl |
WY (a,2) =¥ (a1,2) O NI
ol vl . Wim|  _ 0¥m
T ~ o or . or -

r=da, r=au
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Dual Chamber — OWC Converter

The air volume flow produced by the oscillating internal water surface in the OWC device,

denoted by: Ao
q = ﬂuz ds, =j Erdrd@
S

S

can be decomposed, into three terms associated with the diffraction, gp, the motion-
dependent, gz and the pressure-dependent, q,, radiation problems:

q = qp + X30q3 — X30S; + Pinoqp

Assuming that a Wells type air turbine is placed in a duct between the chamber and the

outer atmosphere, of the device, and it is represented by a complex pneumatic admittance,
N, then the total volume flow g equals to :

q=A-pin

For Appe = |qp| the absorbed power by the OWC maximizes.
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Dual Chamber — OWC Converter

The exciting forces on the device F; are calculated as:

FP =fP.e7w = ﬂ iwp @p - e @t - ndS
5
MP =mP . gm0t = jf iwp @p - e~ . (nxr)dS
S

The hydrodynamic reaction forces and moments F; ;, i,j= 1,3,5; of the device in the i-th

direction due to the unit forced oscillation of the device on the j-th direction can be obtained
as:

g N 1 y .
Fiy = ~iwpi ﬂ O Sl (“51 +5bff'> X e =135
S

The pressure hydrodynamic reaction forces and moments, ng of the OWC device in the
heave direction due to its inner air pressure can be obtained as:

F3P = —LlWPPino jj ¢p - e~lwt. n3dS = (e:f + idg)  Ping * p—iwt
S
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Dual Chamber — OWC Converter

The equations of motion that govern the linear dynamic motions of the OWC device are
summarized as:

5
> m o+ af Do + (bE; + B0 + (6ioy + G0 + S (el — id8)Pino = fic + Sicafur
j=1

Whereas the volume flow equation can be written as:
A Pino =qp + qr + Pino " 9p = qp + q3 - X390 — X30S5; + Pino - qp
The time — averaged power absorbed by the OWC from the waves can be obtained as:

1 2
Pour = ERe[A' |pin0| ]

M
0] 2 (0
pair Cairpair

Here: A = where:

N : the rotational speed of turbine blades
D : the outer diameter of turbine rotor
V :the device’s air chamber volume

¢ :thesound velocity in air
e
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Dual Chamber — OWC Converter

Dimensions Full Scale 1:20
Depth of the outer pontoon 14m 0.7m B
below Sea Water Level (SWL) %—
Depth of the inner pontoon 5.5m 0.275 : —
below SWL
Elevation of the oscillating 5m 0.25m
chamber above SWL
Quter radius of outer pontoon 13m 0.65m
Inner radius of outer pontoon 1Zm 0.6m
Outer radius of inner pontoon Im 0.45m
Inner radius of inner pontoon 6.08m 0.304m
Height of the conical dome 3m 0.15m
Initial diameter of the orifice
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Dual Chamber —WC Converter
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Luhamber — OWCConverte
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Dual Chambr — OWC Converter
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Dual Chamber —- OWC Converter
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Dual Chamber OWC Converter
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pqal Chamber - OWC Convgrter
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Dual Chamber OWC Converter
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